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« Previous sessions:

= MRI signal (Chap. 3)

> Fourier transform(Chaps.9 & 10)

- Today’s content

a

Continuous FT, properties and phase imaging

m]

FT pairs

a

Discrete FT (DFT) and properties

m]

Infinite/finite sampling, aliasing and Nyquist Criterion

a

Image reconstruction and DFT



Continuous FT Properties

FT is the bridge between two ‘conjugate’ domains

 Linearity

 Duality

 Spatial Scaling

» Space Shifting (shift theorem)
- Even/odd symmetry

« Convolution

 Derivative

- Parseval (energy)



Continuous FT Properties

- Linearity:
Flaf(x) + bg(x)]=aF(k) + bG(k)

- Implications for MRI:

= Linear calculation can be done in either k-space or image
domain

= Each point in k-space contains contributions from all
excited spins



Continuous FT Properties

- Spatial Scaling:
Flh(ax)]=H(k/a) /|a|

o Imphcatlons for MRI:

> High spatial frequency components (smaller a) are located at high k,
and vice versa

= High spatial frequency components (smaller a) have lower energy in
k-space, and vice versa. DC component, i.e. the k-space center,
should have the highest energy




Continuous FT Properties

 Shift Theorem:
Shift in one domain <=> Additional Linear phase in another
e.g. S,(k)->s. (k-k,) => B(x) -> p(x)ei2mkox
(k) -> s, (k) e 2™kX0 <= p(x) -> p(x — x,)

 Implications for MRI:
= Qver coverage in the k-space center is necessary to ensure a
high signal baseline in the image
- Motion/displacement of the object will introduce phase error
between k-space lines, introducing artifacts (Chap.23)
= A rigid body motion induced phase error can be recovered by
adjusting the phase of corresponding k-space lines



Continuous FT Properties

« Convolution theorem
F (900 - h(x)) = Gk * HO T f dk' G H(k — k)

 Implications for MRI:
= Important for understanding finite sampling effects in
DFT

- Filtering effects can be achieved either by multiplying
the filter in image domain or convoluting with the FT
form of the filter in k-space



Continuous FT Properties

- Conjugate symmetry (partial FT)

Real[ #(f(x))] = Real [ #(-1(x))]
Imag[ 7(f(x))] = - Imag [ 7 (-1(x))]

 Implications for MRI:

» Partially collected k-space may still contains all the
information of the object (w/ conditions)

= Uncollected k-space can be zero padded, or estimated
based on the collected portion

= Example: Partial Fourier Imaging



More Continuous FT Properties

e Duality

h(x) A Hk) => H(—x) Z h(k)

» Derivative Theorem (e.g. edge finding)
F(f(o)=i2nk_7(f(x))

» Parseval (constant energy)
j dx|h(x)|? =j dk|H (k)|




Important FT pairs

- Dirac delta function (impulse function)
5(/( — kO) = j dx e_izn(k—ko)x — g:[eiZTCROx]

5(3(,' — xO) = j dk e—ian(x—xO) — j:'—l[e—l'ZTCRxO]

- Rectangular Function
F [rect (%)] = Wsinc(nWk)

° Gaussian
_ 2 2
g:'[e TX ] _ e—nk



Signal sampling function

u(k) = Ak z 5(k — pAk) = Ak Z F [ i2mpkx]

p=—0 p=—00

Ulx) =F ulk)] = Ak Z pi2mpAkx

l Y et =y 8(a—m)
6(ax) = &(x)/|al

U(x) = z S(x—&)

q=—00



Discrete FT (DFT)

1on of Continuous FT

« More practical for MRI

« Approximat

n—1

z g (qAx)e—iZRqAprk

G (pAk)

n

q=—

where Ak=1/L and L = 2nAx
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DFT properties

- Linearity

- Spatial Scaling

- Space Shifting (shift theorem)
- Even/odd symmetry

- Convolution

 Derivative

- Parseval



Sampling, Aliasing and Image
Reconstruction

MRI signal is the finite, truncated, digitized version of
the continuous signal picked up by the receive coil

Discrete sampling is done using ADC (analog-digital
converter)

The sampling must meet certain criteria in order to
faithfully represent the original continuous signal

Failure in meeting the criteria will lead to artifacts

Physical spin density p(x) of the object is real, while
reconstructed p(x) is practically complex



Infinite sampling

- Sampling function: k-space x-space
® sampling (k) U(x)
u(k) = Ak Z 5(k — pAk) function sampling
- function
p==co - T T
q=—oo X
*
. sinc’(k)  (5(K) p(x)
- Sampled signal: function fmeton

Seo (k) = s(k)ulk) (®) JL 7

— Ak Z s(pAK)S (k — pAk)

p=—o0 |
: : (k) p.(x)
 Spin density after DFT
P () = () * U ) © 1 7
=zp(x—q/Ak) A
q=—o0

Fig.12.1

Note the
periodicity




Aliasing and Nyquist Sampling Criterion

. A b
- If object length (A) >L, then 5 Aﬂ/‘ - X
no aliasing

overlaps in p., (x) will take
place, introducing aliasing
artifacts

» To avoid aliasing:
A<L or Ak<1/A

|

Nyquist Sampling
Criterion for MRI




Nyquist in Read direction

AkR — ;)‘GRAt )
AkR = 1/LR > BWR = :}’LGRLR > %GRAR
At = T,/N = 1/BWg,

What we usually do is use fixed T, and GR
but 2x oversampling, i.e. At/2,along Read direction

N
BWg= yGrLgr = T

S



Nyquist in Phase Encoding direction

Akpr = ¥AGpgTpg ) 1 1
Akpg = 1/Lpg ¢ ¥AGppTpg = T <71
At:TR — 1/BWPE) PE PE

What we usually do in MRI is use smaller AGpgtpg

Simply collecting more points along PE directiN

llSiIlg fixed AGPETPE: [ Counterpart in Read }

1) Will not change total bandwidth or Ly direction is smaller GpAt,
N N 1

T, NTR TR
2) But increase the PE resolution

BWpg=

ALPE=




Finite, discrete sampling

« Data truncation

Sm(k)=S(k)‘u(k)-rect(k+af/2) A\ Kk A e

Wsinc(mWx)
i

! NN,

|
LA
— ] ————> v

A
ect o riod to view

p(x) = p(x) * U(x) * Wsinc(nWx)e XAk

Sinc shaped
low-pass filter




Finite sampling and k-space symmetry

k+Bk/ 2) instead of rect(i) ?
w w
» Symmetric (a) vs. MRI standard (b)
= K-space center (i.e. k=0) and edge not well defined vs. well defined
= For large 2n, image magnitude will be almost the same
= A phase shift difference in image phase

» The question: why rect(

115G 156




Discrete Fourier Transform(DFT)
nt Tpq/
Ak) = A H(qAx)e” PN
s(pAk) xzqz_np(q x)e

n—1
p(gqAx) = Akz s(pAk)et™a/n

q=-n

« Resolution (in voxel size)




Homework
o Prob 11.1-11.3, 11.8, 12.2, 12.7, 12.8

Next Session
Chapter 13.1-13.3



