Chapter 11 Continuous/Discrete FT

Chapter 12
Sampling and Aliasing in Image Reconstruction

Yongquan Ye, Ph.D. Radiology, Wayne State Univ

Previous sessions:

- MRI signal (Chap. 3)
- Fourier transform(Chaps.9 & 10)

Today's content

- Continuous FT, properties and phase imaging
- FT pairs
- Discrete FT (DFT) and properties
- Infinite/finite sampling, aliasing and Nyquist Criterion
- Image reconstruction and DFT

FT is the bridge between two 'conjugate' domains

- Linearity
- Duality
- Spatial Scaling
- Space Shifting (shift theorem)
- Even/odd symmetry
- Convolution
- Derivative
- Parseval (energy)

• Linearity:

$$\mathcal{F}[af(x) \pm bg(x)] = aF(k) \pm bG(k)$$

- Implications for MRI:
 - Linear calculation can be done in either k-space or image domain
 - Each point in k-space contains contributions from all excited spins

Spatial Scaling:

$$\mathcal{F}[h(ax)] = H(k/a)/|a|$$

- Implications for MRI:
 - High spatial frequency components (smaller a) are located at high k, and vice versa
 - High spatial frequency components (smaller a) have lower energy in k-space, and vice versa. DC component, i.e. the k-space center, should have the highest energy

• Shift Theorem:

Shift in one domain <=> Additional Linear phase in another

e.g.
$$s_m(k) \to s_m(k - k_0) => \hat{\rho}(x) \to \hat{\rho}(x)e^{i2\pi k_0 x}$$

 $s_m(k) \to s_m(k) e^{-i2\pi k x_0} <= \hat{\rho}(x) \to \hat{\rho}(x - x_0)$

• Implications for MRI:

- Over coverage in the k-space center is necessary to ensure a high signal baseline in the image
- Motion/displacement of the object will introduce phase error between k-space lines, introducing artifacts (Chap.23)
- A rigid body motion induced phase error can be recovered by adjusting the phase of corresponding k-space lines

Convolution theorem

$$\mathcal{F}(g(x)\cdot h(x)) = G(k) * H(k) \square \int dk' G(k') H(k-k')$$

- Implications for MRI:
 - Important for understanding finite sampling effects in DFT
 - Filtering effects can be achieved either by multiplying the filter in image domain or convoluting with the FT form of the filter in k-space

Conjugate symmetry (partial FT)

Real
$$[\mathcal{F}(f(x))]$$
 = Real $[\mathcal{F}(-f(x))]$
Imag $[\mathcal{F}(f(x))]$ = - Imag $[\mathcal{F}(-f(x))]$

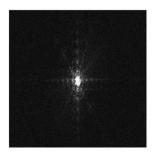
- Implications for MRI:
 - Partially collected k-space may still contains all the information of the object (w/ conditions)
 - Uncollected k-space can be zero padded, or estimated based on the collected portion
 - Example: Partial Fourier Imaging

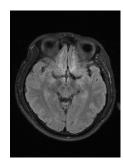
Duality

$$h(x) \stackrel{\mathcal{F}}{\Leftrightarrow} H(k) => H(-x) \stackrel{\mathcal{F}}{\Leftrightarrow} h(k)$$

- Derivative Theorem (e.g. edge finding) $\mathcal{F}(f'(x)) = i2\pi k \mathcal{F}(f(x))$
- Parseval (constant energy)

$$\int_{-\infty}^{\infty} dx |h(x)|^2 = \int_{-\infty}^{\infty} dk |H(k)|^2$$





Important FT pairs

Dirac delta function (impulse function)

$$\delta(k - k_0) = \int_{-\infty}^{\infty} dx \ e^{-i2\pi(k - k_0)x} = \mathcal{F}[e^{i2\pi k_0 x}]$$
$$\delta(x - x_0) = \int_{-\infty}^{\infty} dk \ e^{-i2\pi k(x - x_0)} = \mathcal{F}^{-1}[e^{-i2\pi k x_0}]$$

Rectangular Function

$$\mathcal{F}\left[rect\left(\frac{x}{W}\right)\right] = Wsinc(\pi Wk)$$

Gaussian

$$\mathcal{F}[e^{-\pi x^2}] = e^{-\pi k^2}$$

Signal sampling function

$$u(k) = \Delta k \sum_{p=-\infty}^{\infty} \delta(k - p\Delta k) = \Delta k \sum_{p=-\infty}^{\infty} \mathcal{F}[e^{i2\pi p\Delta kx}]$$

$$U(x) = \mathcal{F}^{-1}[u(k)] = \Delta k \sum_{p=-\infty}^{\infty} e^{i2\pi p\Delta kx}$$

$$\sum_{p=-\infty}^{\infty} e^{i2\pi na} = \sum_{m=-\infty}^{\infty} \delta(a - m)$$

$$\delta(ax) = \delta(x)/|a|$$

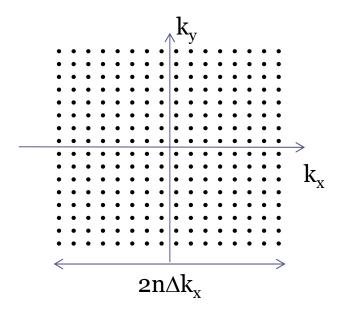
$$U(x) = \sum_{q=-\infty}^{\infty} \delta(x - \frac{q}{\Delta k})$$

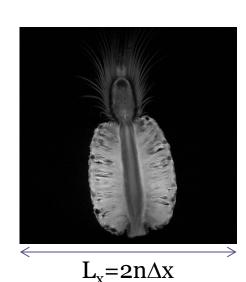
Discrete FT (DFT)

- Approximation of Continuous FT
- More practical for MRI

$$G(p\Delta k) = \sum_{q=-n}^{n-1} g(q\Delta x)e^{-i2\pi q\Delta xp\Delta k}$$

where $\Delta k=1/L$ and $L=2n\Delta x$





DFT properties

- Linearity
- Spatial Scaling
- Space Shifting (shift theorem)
- Even/odd symmetry
- Convolution
- Derivative
- Parseval

Sampling, Aliasing and Image Reconstruction

- MRI signal is the finite, truncated, digitized version of the continuous signal picked up by the receive coil
- Discrete sampling is done using ADC (analog-digital converter)
- The sampling must meet certain criteria in order to faithfully represent the original continuous signal
- Failure in meeting the criteria will lead to artifacts
- Physical spin density $\rho(x)$ of the object is real, while reconstructed $\hat{\rho}(x)$ is practically complex

Infinite sampling

• Sampling function:

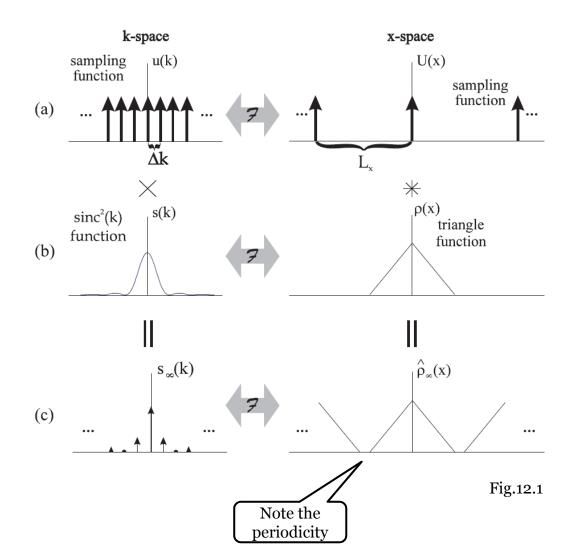
$$u(k) = \Delta k \sum_{p=-\infty}^{\infty} \delta(k - p\Delta k)$$
$$U(x) = \sum_{q=-\infty}^{\infty} \delta(x - q/\Delta k)$$

• Sampled signal:

$$s_{\infty}(k) \equiv s(k)u(k)$$
$$= \Delta k \sum_{p=-\infty}^{\infty} s(p\Delta k)\delta(k - p\Delta k)$$

• Spin density after DFT

$$\hat{\rho}_{\infty}(x) = \rho(x) * U(x)$$
$$= \sum_{q=-\infty}^{\infty} \rho(x - q/\Delta k)$$



Aliasing and Nyquist Sampling Criterion

- 1/Δk L
- If object length (A) >L, then overlaps in $\hat{\rho}_{\infty}(x)$ will take place, introducing aliasing artifacts
- To avoid aliasing: A < L or $\Delta k < 1/A$

Nyquist Sampling Criterion for MRI

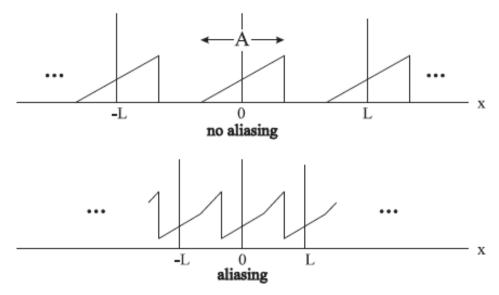
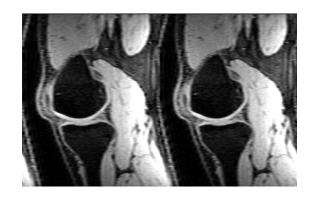


Fig.12.3



Nyquist in Read direction

$$\Delta k_R = \psi G_R \Delta t$$

$$\Delta k_R = 1/L_R$$

$$\Delta t = T_S/N = 1/BW_R$$

$$BW_R = \psi G_R L_R > \psi G_R A_R$$

What we usually do is use fixed T_s and GR but 2x oversampling, i.e. $\Delta t/2$, along Read direction

$$BW_R = \varphi G_R L_R = \frac{N}{T_s}$$

Nyquist in Phase Encoding direction

$$\Delta k_{PE} = \gamma \Delta G_{PE} \tau_{PE}$$

$$\Delta k_{PE} = 1/L_{PE}$$

$$\Delta t = TR = 1/BW_{PE}$$

$$\gamma \Delta G_{PE} \tau_{PE} = \frac{1}{L_{PE}} < \frac{1}{A_{PE}}$$

What we usually do in MRI is use smaller $\Delta G_{PE} \tau_{PE}$

Simply collecting more points along PE direction using fixed $\Delta G_{PE} \tau_{PE}$:

1) Will not change total bandwidth or L_{PE}

$$BW_{PE} = \frac{N}{T_{sPE}} = \frac{N}{NTR} = \frac{1}{TR}$$

2) But increase the PE resolution

$$\Delta L_{PE} = \frac{L_{PE}}{N} = \frac{1}{N \Delta k_{PE}}$$

Counterpart in Read direction is smaller $G_R \Delta t_s$

Finite, discrete sampling

Data truncation

$$s_{m(k)} = s(k) \cdot u(k) \cdot rect(\frac{k + \Delta k/2}{W})$$

 $\hat{\rho}(x) = \rho(x) * U(x) * Wsinc(\pi W x)e^{-i\pi x\Delta k}$

Sinc shaped low-pass filter

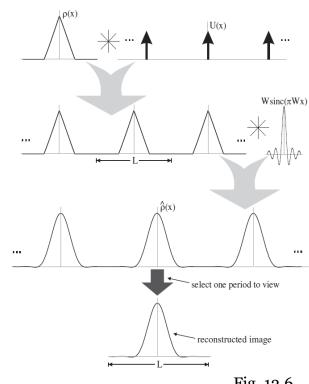
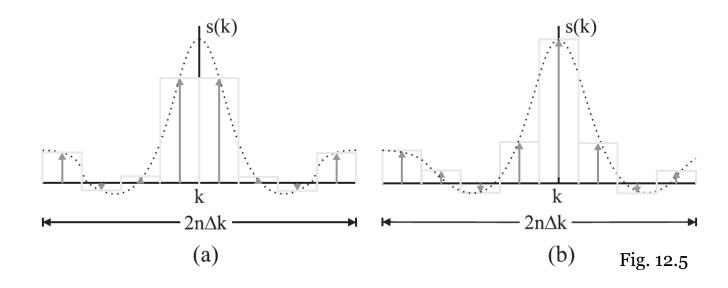


Fig. 12.6

Finite sampling and k-space symmetry

- The question: why $rect(\frac{k+\Delta k/2}{W})$ instead of $rect(\frac{k}{W})$?
- Symmetric (a) vs. MRI standard (b)
 - K-space center (i.e. k=0) and edge not well defined vs. well defined
 - For large 2n, image magnitude will be almost the same
 - A phase shift difference in image phase



Discrete Fourier Transform(DFT)

$$s(p\Delta k) = \Delta x \sum_{q=-n}^{n-1} \hat{p}(q\Delta x)e^{-i\pi pq/n}$$
$$\hat{p}(q\Delta x) = \Delta k \sum_{q=-n}^{n-1} s(p\Delta k)e^{i\pi pq/n}$$

Resolution (in voxel size)

$$\Delta L_{RO} = rac{BW_R}{N_R \gamma G_R}$$
 $\Delta L_{PE} = rac{1}{N_{PE} \gamma \Delta G_{PE} \tau_{PE}}$

Homework

• Prob 11.1 - 11.3, 11.8, 12.2, 12.7, 12.8

Next Session

Chapter 13.1-13.3